首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2984篇
  免费   512篇
  国内免费   498篇
化学   2343篇
晶体学   54篇
力学   208篇
综合类   64篇
数学   305篇
物理学   1020篇
  2024年   6篇
  2023年   61篇
  2022年   99篇
  2021年   137篇
  2020年   143篇
  2019年   153篇
  2018年   123篇
  2017年   147篇
  2016年   159篇
  2015年   199篇
  2014年   202篇
  2013年   251篇
  2012年   296篇
  2011年   276篇
  2010年   216篇
  2009年   224篇
  2008年   216篇
  2007年   191篇
  2006年   160篇
  2005年   138篇
  2004年   77篇
  2003年   71篇
  2002年   67篇
  2001年   56篇
  2000年   58篇
  1999年   36篇
  1998年   32篇
  1997年   27篇
  1996年   23篇
  1995年   28篇
  1994年   18篇
  1993年   18篇
  1992年   18篇
  1991年   15篇
  1990年   20篇
  1989年   8篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   8篇
  1984年   1篇
  1983年   6篇
  1982年   1篇
  1979年   3篇
  1973年   1篇
  1957年   1篇
排序方式: 共有3994条查询结果,搜索用时 156 毫秒
21.
旷世全才列奥纳多·达·芬奇(Leonardo da Vinci),被世人誉为画家、雕刻家、天文学家、发明家、音乐家、数学家、解剖学家、生理学家、地质学家、植物学家、作家、军事、建筑工程和制图师,是意大利文艺复兴时期人文主义的代表人物。本文对其流体力学相关思想及湍流、飞行、波浪和风暴等几个方面的研究贡献进行梳理,认为他是流体力学科学研究的先驱和奠基人,也是一位“流体力学家”。  相似文献   
22.
International Journal of Theoretical Physics - Quantum secure communication is the key development object of current communication technology. There are many branches, among which the most...  相似文献   
23.
A selective and sensitive liquid chromatography–tandem mass spectrometry method was developed for simultaneous determination of etoricoxib in human plasma. Chromatography was performed on an Acquity UPLC HSS T3 column (1.8 μm, 50 × 2.1 mm), with a flow rate of 0.600 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate as the mobile phase. Detection was carried out on Triple QuadTM 5500 mass spectrometer under positive‐ion multiple reaction monitoring mode. The respective mass transitions used for quantification of etoricoxib and etoricoxib‐d3 were m/z 359.0 → 280.1 and m/z 362.0 → 280.2. Calibration curves were linear over the concentration range of 5–5000 ng/mL. The validated method was applied in the pharmacokinetic study of etoricoxib in Chinese healthy volunteers under fed and fasted conditions. After a single oral dose of 120 mg, the main pharmacokinetic parameters of etoricoxib in fasted and fed groups were respectively as follows: peak concentration, 2364.78 ± 538.01 and 1874.55 ± 367.90 ng/mL; area under the concentration–time curve from 0 to 120 h, 44,605.53 ± 15,266.66 and 43,516.33 ± 12,425.91 ng h/mL; time to peak concentration, 2.00 and 2.50 h; and half‐life, 24.08 ± 10.06 and 23.64± 6.72 h. High‐fat food significantly reduced the peak concentration of etoricoxib (p = 0.001) but had no effect on the area under the concentration–time curve.  相似文献   
24.
Multifunctional metal nanostructures with a hollow feature, especially for nanoframes, are highly attractive owing to their high surface-to-volume ratios. However, pre-grown metal nanocrystals are always involved during the preparation procedure, and a synthetic strategy without the use of a pre-grown template is still a challenge. In this article, a template-free strategy is reported for the preparation of novel AuPt alloy nanoframes through simply mixing HAuCl4 and H2PtCl6 under mild conditions. The alloy nanostructures show a bipyramid-frame hollow architecture with the existence of only the ten ridges and absence of their side faces. This is the first report of bipyramid-like nanoframes and a template-free method under mild conditions. This configuration merges the plasmonic features of Au and highly active catalytic sites of Pt in a single nanostructure, making it an ideal multifunctional platform for catalyzing and monitoring the catalytic reaction in real time. The superior catalytic activity is demonstrated by using the reduction of nitrobenzene to the corresponding aminobenzene as a model reaction. More importantly, the AuPt nanoframes can track the reduction process on the basis of the SERS signals of the reactants, intermediates, and products, which helps to reveal the reaction mechanism. In addition, the AuPt nanoframes show much higher electrocatalytic properties toward the methanol oxidation reaction than commercial Pt/C electrocatalysts.  相似文献   
25.
Proteolysis of amyloid-β (Aβ) is a promising approach against Alzheimer's disease. However, it is not feasible to employ natural hydrolases directly because of their cumbersome preparation and purification, poor stability, and hazardous immunogenicity. Therefore, artificial enzymes have been developed as potential alternatives to natural hydrolases. Since specific cleavage sites of Aβ are usually embedded inside the β-sheet structures that restrict access by artificial enzymes, this strongly hinders their efficiency for practical applications. Herein, we construct a NIR (near-IR) controllable artificial metalloprotease (MoS2-Co) using a molybdenum disulfide nanosheet (MoS2) and a cobalt complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Codota). Evidenced by detailed experimental and theoretical studies, the NIR-enhanced MoS2-Co can circumvent the restriction by simultaneously inhibition of β-sheet formation and destroying β-sheet structures of the preformed Aβ aggregates in living cell. Furthermore, our designed MoS2-Co is an easy to graft Aβ-target agent that prevents misdirected or undesirable hydrolysis reactions, and has been demonstrated to cross the blood brain barrier. This method can be adapted for hydrolysis of other kinds of amyloids.  相似文献   
26.
Shao  Lingling  Zhou  Jiancheng  Zhang  Ming  Zhang  Qianyi  Wang  Nan  Zhu  Fengfan  Wang  Ke  Li  Naixu 《Research on Chemical Intermediates》2022,48(6):2489-2507

The one-pot catalytic conversion of cellulose into ethylene glycol (EG) is an attractive way of biomass utilization. However, low-cost, efficient, and stable catalysts are the premise and research challenges of industrial application. Herein, the magnetic recyclable W–Ni@C catalyst was synthesized by in-situ pyrolysis of Ni-MOFs impregnated with ammonium metatungstate. Compared with the Ni-W bimetallic catalysts prepared by the impregnation method and the sol–gel method, the W–Ni@C catalyst for cellulose hydrogenolysis reaction can achieve a higher ethylene glycol yield (67.1% vs 43.3% and 42.6%) and 100% of cellulose conversion rate. The uniformly dispersed Ni nanoparticles and abundant defective WOx were formed in a reductive atmosphere generated in pyrolysis of Ni-MOFs, which was indispensable for the hydrogenolysis of cellulose into EG. Besides, the hierarchical porous carbon derived from organic ligands in Ni-MOFs reduces the mass transfer resistance while confining Ni nanoparticles and WOx to prevent their leaching, effectively enhancing the stability of the W–Ni@C catalyst. Therefore, the remarkable catalytic performance, the simple and effective recovery method as well as satisfying stability would make W–Ni@C become a promising catalyst for the conversion of cellulose to EG.

Graphical abstract
  相似文献   
27.
Liu  Yudong  Chen  Bing  Wang  Dengshi  Jiang  Nan  Tan  Junkun  Fu  Jing  Wu  Baohui  Hu  Yuanhao  Guo  Zhihong 《Journal of Thermal Analysis and Calorimetry》2021,144(4):1369-1379
Journal of Thermal Analysis and Calorimetry - The surface tensions of graphene oxide nanofluids of five mass concentrations were measured by the oscillation droplet method in an acoustic levitator....  相似文献   
28.
While concerns about improving recharged afterglow intensity in vivo still motivate further exploration, afterglow nanoparticles (AGNP) offer unique optical merit for autofluorescence-free biological imaging. Apart from efforts enhancing the afterglow emission properties of AGNP, improving afterglow excitation response to visible or near infrared light is important but has lacked success. Dye sensitization has been used to improve the optical response of photovoltaic nanomaterials and to enhance upconversion luminescence efficiency. This concept has recently been expanded and applied to AGNPs. As a new multifunctional nanoprobe, such dye-sensitized AGNP takes advantage of both high spatial resolution fluorescence imaging and sensitive afterglow imaging. This Concept introduces the background, the concept, mechanism, and related imaging application, as well as reviewing existing challenges and proposing future developmental directions for the dye-sensitized AGNPs.  相似文献   
29.
In this paper, graphene oxide/polyethylene glycol (GO/PEG) composite water-based lubricant was prepared by an ultrasonic dispersion method, and characterized and analyzed by Fourier transform infrared (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The suspension performance of GO/PEG composite water-based lubricant in water was verified by static sedimentation and centrifugation, and then, the prepared GO/PEG composite water-based lubricant was added into 304 stainless steel and 6061 aluminum alloy, and the coefficient of friction (COF) curve, average COF value, average wear rate, corresponding photomicrographs of balls and disks after wear, and energy-dispersive spectrometer (EDS) elemental analysis were used to illustrate the lubrication effect and lubrication mechanism. The results show that the GO/PEG composite water-based lubricant possesses excellent suspension ability in water, and the average COF value and wear rate of GO/PEG composite water-based lubricant are reduced by 78.8% and 88.8%, respectively, compared with water lubrication. The excellent lubrication effect of GO/PEG composite water-based lubricant can effectively reduce the cold-welding and adhesive wear phenomenon, mainly because GO/PEG composite water-based lubricant first fills the uneven surface of friction mating to form a high-quality lubricating film and then because of the special space structure of GO and the low shear between GO layers and the synergistic lubrication effect of GO/PEG.  相似文献   
30.
Thermally healing capability of cracks and defects is important and urgent for the safe operation and life extending of electric materials and devices. Here, by the combination of thermally driven reversible Diels–Alder (DA) interaction and in-situ chemical oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT), a series of intrinsically conductive poly(3,4-ethylenedioxythiophene) (PEDOT)/DA composites possess intrinsically self-healing property under low-temperature (reverse DA reaction at 100°C; DA crosslinking at 60°C) stimulus were achieved. The crosslinking DA bonding reactions are multiple from the co-existence of pre-synthesized macromolecular polyurethane attached DA units (PU-DA) and 2,4-hexadiyne-1,6-diol (DADOL) in the films. PU-DA involved in the polymerization process of EDOT to endow PEDOT with outstanding solution-processability, uniform film making, and structural self-healing capability, while DADOL was added to enhance the cross bonding between polymer chains. This work will accelerate the research and application development of intrinsically self-healing conducting polymers for commercial capacitors, antistatic coatings, implantable, printable electronics, and so on.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号